Presentation at JAXA to JHS members

Recent Activities on Rotorcraft CFD at Konkuk University

Soo Hyung Park

Department of Mechanical and Aerospace Engineering, Konkuk university

February 19, 2023

Contents

◆ Introduction to KFLOW Solver

◆ Application to Helicopter Aerodynamics

- ❖ Propeller-Wing Interaction
- \div HART-II
- **V** Co-axial Rotor
- ❖ Passive/Active Fuselage Drag Reduction

URANS SOLVER (KFLOW) INTRODUCTION

Helicopter Aerodynamics **Biography ■ KFLOW**

Co-rotating stacked rotor

LCH Helicopter (KAI)

- Parallelized Structured Compressible Navier-Stokes Equations
- Low-Mach number Preconditioning
- Thermo-Chemical nonequilibrium reactive flows
- Chimera Overset Grid System
- 6-DOF Simulations for multiple moving bodies
- Flux / Time schemes
	- \checkmark Flux: Roe's FDS / HLLE+ / AUSMPW+ / M-AUSMPW+
	- \checkmark Interpolations: TVD MUSCL types / WENO-types / eMLP-types
	- \checkmark Time: Explicit Runge-Kutta / Implicit (BDF2) with DADI / D-Implicit RK
- Turbulence / Transition Models
	- \checkmark Turbulence: SA-types / k- ϵ / k- ω types / DES, DDES / ILES / Roughness
	- \checkmark Large Eddy Simulation with Dynamic Smagorinsky subgrid model
	- \checkmark Transition: γ Re_a

Brief Review of eMLP

• Spatial Discretization Methods

KU KONKUK

• Strategy : Mixed high-order reconstruction to reduce unnecessary numerical dissipation

4

eMLP-VC (Newly Modified eMLP)

- eMLP-VC (Vorticity Conservation)
	- eMLP has been generally developed for a wide variety of flows (including magnetohydrodynamic), the **accuracy for rotorcraft flowfields** can be further improved.
	- The **robustness** of eMLP can be refined by maintaining the consistency of the sensing function and the interpolation method.

eMLP-VC (Newly Modified eMLP)

Original distinguishing mechanism

O Continuous

• Linear discontinuous

 $= 0.81$

• Nonlinear discontinuous Γ^* is normalized by initial vorticity magnitude

Modified distinguishing mechanism

O Continuous

• Linear discontinuous

● Nonlinear discontinuous F^{*} is normalized by initial vorticity magnitude

-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 $0000000000000000000000000$ 000000000000000000000 0000000000 ↷ \circ ♦ $\circ \circ \circ$ 000000000 $\circ \circ \circ$ 000 0000000 0000 \Diamond 00000000 \circ 0000 00000000 81 O K ♦ ♦ 0000 0000000 ∞ Q \circ 0000 $\&\circ\circ\circ\circ$ 0000000 ∞ $^{\prime}\circ\circ\circ\circ\circ$ $\circ \circ \circ \circ \circ \circ \circ \circ \circ \circ$ 000000000000 000 \circ 00000000000 0000000000 ♦ $0000000000000000000000000$ -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

eMLP-VC (Newly Modified eMLP)

Accuracy Improvement of eMLP-VC

• Nonlinear wave propagation (Isentropic vortex)

Γ ∗ is the vorticity magnitude normalized by the initial vorticity magnitude

Application: PROWIM

- Propeller Wing Interaction (PROWIM)
	- Tested at TU delft (2005) for analysis of the propeller-wing interaction
	- Experiment setting
		- ✓ Wing: rectangular shape with AR 5.33, NACA 64-2-015A airfoil
		- ✓ Propeller: NACA 5868-9, Clark Y airfoil
			- Pitch : 25° at 0.75R
		- \checkmark Wing incident angle: 4°
		- ✓ Freestream M = 0.14, Re = 0.8×10⁶
	- Solver Information

KU KONKUK

- \triangledown Temporal Integration : Unsteady (BDF2 with dual time stepping), 1° ver Information
 \checkmark Temporal Integration : Unsteady (BDF2 with dual time st
 \checkmark Turbulence model : $k - \omega W \& -D u b \dot{n} +$
 \checkmark Grids: Blade - Q type 241×165×91 (y+=1 at tip
-
- \checkmark Grids: Blade O-type, 241×165×81 / y+=1 at tip Background : 48,000,000 / 10% chord

Application: PROWIM

■ Propeller – Wing Interaction (PROWIM)

Application: PROWIM

■ Propeller – Wing Interaction (PROWIM)

Sectional Pressure Coefficient (C_p)

KU KONKUK

HART II (Second Higher harmonic control Aeroacoustics Rotor Test) case

• 2001. German-Dutch wind tunnel (DNW)

- Representative rotorcraft experiment
- Descent flight condition
	- $\mu = 0.15$, $\alpha_{\text{Shaft}} = 4.5^{\circ}$

Blade-vortex interaction (BVI) dominant flowfield

• Rotor property (BO105 – Mach-scaled blade) No. of blades: 4 / Airfoil: NACA23012mod Radius: 2m / Chord: 0.121m

HART II (Second Higher harmonic control Aeroacoustics Rotor Test) case

- CFD-CSD loose coupling / Acoustic Analogy
	- ✓ **[Fluid Dynamics] KFLOW**

Spatial Discretization: upwind flux function (AUSMPW+)

WENO-JS, WENO-M, WENO-Z, eMLP, eMLP-VC

Temporal Integration: BDF2 with dual time stepping / Diagonalized ADI Turbulent Equation: $k - \omega$ Wilcox-Durbin+ model Grids : **background: 21M (Minimum** $\Delta s = 0.15c$ **)**

blade: 1.3M (X 4 blades)

total 26.2M

✓ **[Structure] CAMRAD II (NASA, Dr. Wayne Johnson)**

Structural solver : Beam model (Isotropic with elastic axis / 15 DOF) Aerodynamic solver : Free wake with static stall model / Rigid wake model

✓ **[Aeroacoustic] KR-NOISE (KARI, Dr. Wie Sung Yong)** Ffocs-Williams and Hawkings eqn.

Loading noise & Thickness noise

■ Results of HART II

KU KONKUK

■ Tonal noise comparison (using Farassat 1A eqn. / KR-noise)

- Mid-frequency noise (Blade pass frequency of 6 to 40)
- Mic \rightarrow -2.2m (1 Radius)

KU KONKUK

14

Application: Stacked Rotor

- Co-rotating coaxial rotor ('=stacked rotor')
	- Also called as 'stacked rotor'

KU UNIVERSITY

- Possible advantages (compare to counter-rotating coaxial rotor)
	- ✓ No need to consider the "torque balance"
		- ⁃ Optimized pitch angle (upper / lower rotor both)
			- \rightarrow Gain in aerodynamic performance (efficiency)
	- ✓ Can avoid Blade/vortex interaction (BVI) condition
		- ⁃ Counter-rotating rotor always have BVI in 1 rev. Co-rotating rotor can avoid the BVI (optimizing the index angle) à **Reduction of noise / vibration**
- Several researches have been conducted for UAM/UAV aircraft
- Analyzed by Prof. K. Yee and Dr. Y.P. Hong (SNU) with KFLOW

Quantification of Swirl Recovery in a Coaxial Rotor System Quaritri Cation of Swift Recovery in a Coaxian Rotor System
2017, American Helicopter Society Annual Forum, Corresponding author: Daiju Uehara, Jayant Sirohi (Univ. of Texas) **Dotor custo** CCR Stacked at $\phi = 0$ 0.40 at $\phi = 10$ 0.982 1.668 0.960 1.510 at $\dot{\phi} = 0$ ^c 1.134 0.996 $\frac{1}{2}$ = -10 1.227 1.001 0.995 Index Angle & Ideg

Experimental and computational investigation of stacked rotor performance in hover
2021, Aerospace Science and Technology, George Jacobellis, Rajneesh Singh, Chloe Johnson, Jayant Sirohi, Rob McDonald

Application: Stacked Rotor

Flowfields of DOE cases (snapshot of each cases)

• Vortex field visualized by iso-surface method using Q-criterion

0.0162

Thrust history

Stacked rotor with BVI ($Z = 0.3D$, $\phi = 45^{\circ}$, $\Delta\theta = 0^{\circ}$)

- Subsonic Wind Tunnel Internal Balance (KB-40) High-speed Compound Rotorcraft • Internal Balance (KB-40)
	- 6-Component Internal Balance (5 forces, 1 moment)
	- **Strain Gauge Type**
	- Calibration Process with Multiple Linear Regression

<Manufacturing Scale-down Model>

- \checkmark Passive Drag Reduction
	- \triangleright Extended surface
	- \triangleright Extruded groove

• Extended Surface on full-scale configuration

NAMICS MODELING & SIN

• Extruded Groove on Extension 3 Model $(1: 1, A_0A = 8^\circ, M = 0.3)$

<Applying Extruded Groove at Separation Point>

Active Reduction of Fuselage Drag

Concluding Remarks

- \blacklozenge A hybrid reconstruction method can enhance vorticity-preserving capability of rotorcraft aerodynamics solver.
	- ❖ Simulations of PRWIM and HART-II
	- **Ex** Stacked rotor
	- * New approaches : Vorticity confinement and Implicit RK,
- Passive and active schemes can reduce the fuselage drag, especially for high-speed compound helicopters.
	- ❖ Passive reduction
	- ❖ Open loop active reduction
	- Direction : closed loop active control with AI-POD-based controller

